
Genotypes Loader Documentation

Carolyn T Caron et al., University of Saskatchewan, Pulse Bioinformatics

Apr 21, 2023

Contents:

1 Installation 3
1.1 Dependencies . 3

2 Configuration 5
2.1 Controlled Vocabulary Terms . 5
2.2 Database Write Options . 5

3 Usage 7
3.1 Drush Command . 7
3.2 Example Usage . 8

4 File Formats 9
4.1 Genotypes File . 9
4.2 Samples File . 10

5 Demonstration 13
5.1 Step 1: Preparation . 13
5.2 Step 2: Prepare the Files . 14
5.3 Step 3: Import genotypic data . 14

6 Data Storage 15
6.1 Chado Schema and Extensions . 15

i

ii

Genotypes Loader Documentation

This module provides a drush command to load genotypic data from a variety of file formats. Data is saved in GMOD
Chado in accordance with ND Genotypes including use of the genotype_call table.

Note: For further support of genotypic data such as variant/marker pages and a variant by germplasm matrix, see ND
Genotypes.

Contents: 1

https://github.com/UofS-Pulse-Binfo/nd_genotypes
https://github.com/UofS-Pulse-Binfo/nd_genotypes
https://github.com/UofS-Pulse-Binfo/nd_genotypes

Genotypes Loader Documentation

2 Contents:

CHAPTER 1

Installation

Install this module as you would any other Drupal module after ensuring you have the following dependencies.

1.1 Dependencies

• Tripal 3.x

• PostgreSQL 9.3 and up (at least 9.4 is recommended)

• Drush

3

Genotypes Loader Documentation

4 Chapter 1. Installation

CHAPTER 2

Configuration

2.1 Controlled Vocabulary Terms

This module currently expects the following controlled vocabulary terms already exist in chado:

Purpose Term Name Controlled Vocabulary
Sample type genomic_DNA sequence
Sample => germplasm relationship is_extracted_from stock_relationship
Marker => variant relationship is_marker_of stock_relationship
Marker type Indicated by user sequence
Variant type Indicated by user sequence
Property type for free-text marker description marker_type feature_property

You can configure these terms through a settings form under module configuration. In the future, you will also be able
to configure the controlled vocabularies for these terms as well.

2.2 Database Write Options

There is configuration to specify whether you wan the loader to insert only, update only or update/insert as needed.

5

Genotypes Loader Documentation

6 Chapter 2. Configuration

CHAPTER 3

Usage

3.1 Drush Command

• Command: load-genotypes

• Alias: load-geno

• Arguments:

– input-file: The filename of the matrix file for upload

– sample-file: The filename of a tab-delimited file specifying for each sample name in the genotypes
file: the name of the stock in the database, the stock accession ID, the name of the germplasm, the
germplasm Accession ID, type fo germplasm, and organism (optional). See “samples.list” in the
sample_files folder for an example.

• Options:

– variant-type: The Sequence Ontology (SO) term name that describes the type of variants in the file
(eg. SNP, MNP, indel).

– marker-type: A free-text title that describes the marker technology used to generate the genotypes in
the file (e.g. “Exome Capture”, “GBS”, “KASPar”, etc.).

– ndgeolocation: A meaningful location associated with this natural diversity experiment. For example,
this could be the location the assay was completed in, the location the germplasm collection was
from, or the location the markers were developed at. This should be the description field of your
ndgeolocation.

– organism: The organism of the reference genome which was used for aligning reads to call the vari-
ants. If there is an empty value in the “Organism” column of the sample file, the loader will default to
this parameter.

– project-name: All genotypes will be grouped via a project to allow users to specify a particular dataset.

This loader supports 3 different file formats (described under file formats below) and will auto-detect which format
you have provided.

7

Genotypes Loader Documentation

3.2 Example Usage

• Load a genotype matrix file (mymatrix.tsv) using the sample/germplasm information provided in samples.list.
With this example, you will be prompted to enter each of the options listed above.

drush load-genotypes mymatrix.tsv samples.list

• Load a VCF file (mygenotypes.vcf) using the sample/germplasm information provided in samples.list but pro-
vide the command with all the options upfront to avoid prompting.

drush load-genotypes sample.vcf samples.list --organism="Citrus sinensis" \
--variant-type="SNP" --marker-type="genetic_marker" \
--project-name="Citrus Demonstration Genotypic Data"

8 Chapter 3. Usage

CHAPTER 4

File Formats

4.1 Genotypes File

This module supports loading of three types of genotype files:

4.1.1 1. VCF

##fileformat=VCFv4.0
##fileDate=20090805
##source=myImputationProgramV3.1
##reference=1000GenomesPilot-NCBI36
##phasing=partial
##INFO=<ID=NS,Number=1,Type=Integer,Description="Number of Samples With
→˓Data">
##INFO=<ID=DP,Number=1,Type=Integer,Description="Total Depth">
##INFO=<ID=AF,Number=.,Type=Float,Description="Allele Frequency">
##INFO=<ID=AA,Number=1,Type=String,Description="Ancestral Allele">
##INFO=<ID=DB,Number=0,Type=Flag,Description="dbSNP membership, build 129">
##INFO=<ID=H2,Number=0,Type=Flag,Description="HapMap2 membership">
##FILTER=<ID=q10,Description="Quality below 10">
##FILTER=<ID=s50,Description="Less than 50% of samples have data">
##FORMAT=<ID=GT,Number=1,Type=String,Description="Genotype">
##FORMAT=<ID=GQ,Number=1,Type=Integer,Description="Genotype Quality">
##FORMAT=<ID=DP,Number=1,Type=Integer,Description="Read Depth">
##FORMAT=<ID=HQ,Number=2,Type=Integer,Description="Haplotype Quality">
#CHROM POS ID REF ALT QUAL FILTER INFO FORMAT Ross
→˓Prado Ash
1A 14370 . G A 29 PASS NS=3;DP=14;AF=0.5;DB;H2
→˓GT:GQ:DP:HQ 0|0:48:1:51,51 1|0:48:8:51,51 1/1:43:5:.,.
1A 17330 . T A 3 q10 NS=3;DP=11;AF=0.017
→˓GT:GQ:DP:HQ 0|0:49:3:58,50 0|1:3:5:65,3 0/0:41:3
1A 1110696 rs6040355 A G,T 67 PASS NS=2;DP=10;AF=0.333,0.
→˓667;AA=T;DB GT:GQ:DP:HQ 1|2:21:6:23,27 2|1:2:0:18,2 2/2:35:4

(continues on next page)

9

Genotypes Loader Documentation

(continued from previous page)

1A 1230237 . T . 47 PASS NS=3;DP=13;AA=T GT:GQ:DP:HQ
→˓0|0:54:7:56,60 0|0:48:4:51,51 0/0:61:2
1A 11111 1subfield C A 50 PASS A=1;B=2;C=3 GT
→˓0/1 ./. 1/1

4.1.2 2. Genotype Matrix

A tab-delimited data file where each line corresponds to a SNP and columns correspond to germplasm assayed. Ex-
pected columns: (1) Marker Name, (2) Chromosome Name, (3) Position on Chromosome, (4+) Sample Genotype
Calls.

Marker name Chromosome Position 1048-8R 964a-46 Giftgi
FcChr1Ap11111 1A 11111 CC AC AA
FcChr1Ap22222 1A 22222 GG GC GG
FcChr1Ap33333 1A 33333 TA AA GA

4.1.3 3. Genotype Flat-file

A tab delimited data file where each line is a genotypic call. Expected columns: (1) Marker name, (2) Chromosome
Name, (3) Position on Chromosome, (4) Sample Name, (5) Genotype call.

Marker name Chromosome Position Sample name Genotype call
FcChr1Ap11111 1A 11111 Ross CC
FcChr1Ap11111 1A 11111 Prado CC
FcChr1Ap11111 1A 11111 Ash CC
FcChr1Ap11111 1A 11111 Piero CT
FcChr1Ap11111 1A 11111 Tai CC
FcChr1Ap11111 1A 11111 Beverly TC
FcChr1Ap11111 1A 11111 Argent CC
FcChr1Ap11111 1A 11111 Trenus TT
FcChr1Ap11111 1A 11111 Zapelli CC
FcChr1Ap11111 1A 11111 Amato CG

4.2 Samples File

All formats require a separate samples file describing the germplasm assayed. This file is expected to be a tab-delimited
file with the following columns: (1) Sample name in the genotypes file, (2) Sample name, (3) Sample accession, (4)
Germplasm name, (5) Germplasm accession.

The next two columns are optional: (6) Germplasm type (otherwise it is currently assumed to be of type ‘Individual’
from the stock_type cv) and (7) Organism (this allows multiple organisms in your genotypes file, assuming they have
all been aligned to the same genome. Otherwise, the default value is the organism you specified as an option).

Sample name Sample_name Sample_Accession Germplasm_name Germplasm_
→˓Accession Germplasm_Type Organism
Ross Ross_110201 Catsam1 Ross Catgerm1 Individual Felis catus
Prado Prado_110201 Catsam2 Prado Catgerm2 Individual Felis catus
Ash Ash_110201 Catsam3 Ash Catgerm3 Individual Felis catus
Piero Piero_110201 Catsam4 Piero Catgerm4 Individual Felis catus
Tai Tai_110201 Catsam5 Tai Catgerm5 Individual Felis catus

(continues on next page)

10 Chapter 4. File Formats

Genotypes Loader Documentation

(continued from previous page)

Beverly Beverly_110201 Catsam6 Beverly Catgerm6 Individual Felis
→˓catus
Argent Argent_110201 Catsam7 Argent Catgerm7 Individual Felis
→˓catus
Trenus Trenus_110201 Catsam8 Trenus Catgerm8 Individual Felis
→˓catus
Zapelli Zapelli_110201 Catsam9 Zapelli Catgerm9 Individual Felis
→˓catus
Amato Amato_110201 Catsam10 Amato Catgerm10 Individual Felis catus

4.2. Samples File 11

Genotypes Loader Documentation

12 Chapter 4. File Formats

CHAPTER 5

Demonstration

This demonstration will walk you through loading the sample files that come with the module. This is meant to show
you the full process of loading a VCF file using this module and also as a means to evaluate the module.

Warning: These instructions should only be followed on a DEVELOPMENT site. Data will be inserted into your
database.

5.1 Step 1: Preparation

5.1.1 Organism

Before loading a VCF file you need to ensure your have a chado organism record for the species the data is from. This
can be done through the administrative interface by navigating to Content > Tripal Content > Add Tripal Content and
clicking on Organism. For our sample file we need to add Citrus sinensis as they did in the Tripal Tutorial: Organism.

Note: The system does handle using a different species for the genomic backbone and variants then for the germplasm
the data is associated with. For example, when genotyping wild species you will often align your data against a
cultivated reference. In this case, you would supply the cultivated species for the --organism parameter and then
the wild species would be indicated with each individual.

5.1.2 Genome

Next, we need to import the genome our genotypic data was aligned to. This can be done through the built-in Tripal
GFF3 and/or FASTA importers as shown in the Tripal Tutorial: Genomes & Genes. Our genotypic data is aligned to
the Citrus sinensis scaffold00001 imported in the linked Tripal tutorial.

13

https://tripal.readthedocs.io/en/latest/user_guide/example_genomics/organisms.html
https://tripal.readthedocs.io/en/latest/user_guide/example_genomics/genomes_genes.html

Genotypes Loader Documentation

5.1.3 Project

All genotypic data points from a single file are grouped using a chado project. To create a chado project go to Content
> Tripal Content > Add Tripal Content and then select “Project” under General.

• Name: Citrus Demonstration Genotypic Data

• Description: This project contains demonstration data imported via the University of Saskatchewan, Pulse
Bioinformatcis Genotypes Loader. This data is not real and should not be used in analysis.

5.2 Step 2: Prepare the Files

This has already been done for you with the VCF file at sample_files/sample.vcf and the associated
germplasm samples file at sample_files/samples.list. For importing your own data, any VCF file fol-
lowing the VCF 4+ specification. The samples file then describes each of the germplasm samples in the VCF file with
one row per sample. Full information on these file formats is available under “File Formats”.

5.3 Step 3: Import genotypic data

Now we bring all that preparation into a single command to start the import process.

cd $DRUPAL_ROOT/sites/all/modules/genotypes_loader/sample_files
drush load-genotypes sample.vcf samples.list --organism="Citrus sinensis" \

--variant-type="SNP" --marker-type="genetic_marker" \
--project-name="Citrus Demonstration Genotypic Data"

Note: You will be prompted for your database user password during this process.

14 Chapter 5. Demonstration

CHAPTER 6

Data Storage

Genotypic data is stored through use of a custom table (genotype_call) created by this module. This table provides
a centralized, relational table which pulls all the information for a given genotypic call (marker assay result on a
given germplasm for a specific project) together in a single record. It also supports flexible storage for all meta-
data associated with a genotype assay result through a PostgreSQL JSONB metadata column. We went with this
backwards compatible approach to make supporting large genotypic datasets more efficient then chado alone. For
more information on our schema and the reasons we went with this approach see our schema documentation.

Note: This loader stores data as expected by the ND Genotypes.

6.1 Chado Schema and Extensions

There are currently two ways to store your genotypic data in Chado v1.3 with this module providing a third, more
efficient way. You can see a comparison of the various methods below which should make it clear why we’ve gone
with the storage method we have.

15

https://github.com/UofS-Pulse-Binfo/nd_genotypes

Genotypes Loader Documentation

6.1.1 Comparison of Methods

MethodName Cus-
tom
Tables

Supports
Meta-
data

#
Ta-
bles

Comments

1 ND
Exper-
iment

No Yes 14 Not suitable beyond 3 million genotype calls.

2 Stock
Geno-
type

No No 10 A good alternative if you don’t want to use custom tables but have
a lot of data. Similar efficiency to Method #2 but less support for
meta-data.

3 Geno-
type
Call

Yes Yes 10 Most efficient; although it touches the same number of tables as
Method #3 there are less records per genotype call

All three methods store Markers & Variants in the same way. For the purposes of this module, a variant is a
location on the genome where variation has been detected and has a type of SNP, MNP, Indel, etc. A marker then
indicates which method the genotype calls associated with it were determined by. For example, you may have a
variant on Chromosome 1 at position 45678 that you detected variation through two different methods. Each method
would be indicated as a marker and all the genotype calls detected by that method would be attached to the appropriate
marker and not directly to the variant. This has been determined necessary since the level of trust and how you interpret
any quality meta-data will depend on the method.

6.1.2 Our Method: Custom Genotype Call Table

Now, lets consider the same example as in Method 1 (one VCF line with three alleles and six samples):

#
Records

Tables Example Explanation

2 feature “LcChr1p555” and “LcChr1p555 GBS
Marker”

One each for variant and marker where the variant
may already exist.

2 fea-
tureloc

Chr1:554-555 for each. Locate each of the variant and marker on the chrom-
some.

1 fea-
ture_relationship

“LcChr1p555 GBS Marker”
is_marker_of “LcChr1p555”

Link the marker and variant.

6 geno-
type_call

All Foreign Keys with the exception
of any quality information you want to
store in the meta-data column

This links the marker, variant, allele call, stock and
project all in one and stores any addition quality in-
formation in the meta-data column.

Total: 11 records per line in a VCF with only 6 stocks and 3 alleles per variant.

Notice how efficient this method is. This is because (1) most of the foreign key connections are taking place in a single
table (genotype_call) and (2) there now only needs to be a single record in the genotype table for “AA” rather than
one record per marker using the previous method. For further comparison, the same 100,000 line VCF file would now
only take 1,100,000 records to store not including the records for your chromosomes, which already exist, those for
your stocks, only 6 per file, and those for you alleles (genotype table), which likely already exist. Furthermore, storing
meta-data doesn’t increase the number of records like it would in the first method.

Note: For more information about the two methods supported by core Chado, see the ND Genotypes documentation
on schema.

16 Chapter 6. Data Storage

https://nd-genotypes.readthedocs.io/en/latest/data_storage/schema.html
https://nd-genotypes.readthedocs.io/en/latest/data_storage/schema.html

	Installation
	Dependencies

	Configuration
	Controlled Vocabulary Terms
	Database Write Options

	Usage
	Drush Command
	Example Usage

	File Formats
	Genotypes File
	Samples File

	Demonstration
	Step 1: Preparation
	Step 2: Prepare the Files
	Step 3: Import genotypic data

	Data Storage
	Chado Schema and Extensions

